
1992

NASA/ASEE SUMMER FACULTY FELLOWSHIP

PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA

GUIDE TO OBJECT-ORIENTED ANALYSIS AND DESIGN

Prepared by:

Academic Rank:

Institution and

Department:

Harry C. Harrison

Associate Professor

Capitol College
Department of Mathematics and

Computer Engineering

NASA/MSFC:

Office:

Division:

Branch:

MSFC Colleague:

Information Systems Office

Systems Development and Implementation Office

Data Systems Branch

Marcellus Graham

XVII

Introduction

Purpose

The purpose of this guide is to provide Marshall Space Flight

Center personnel with guidelines for the use of object-oriented analysis

and design and to describe how it can be accomplished within the

framework of existing development directives, including the Software

Development Plan. It is not intended as a detailed tutorial. The reader

is referred to the Coad and Yourdon texts[l,2] in the References.

Overview

The term object-oriented has become a popular buzz word in the

computer world today. Many say that it will be the dominant form of

software development in the future. It is characterized by reusability

of code, resulting in faster development and significantly lower

development costs. In today's budget constrained world, it is critical

to use the most cost-effective tool to develop software. NASA should be

at the leading edge of this development.

While the object-oriented approach has great potential, it has

been misused. Some vendors use this paradigm:

Object-oriented is good.

My Product is object-orlented.

Therefore my product is good.

Additionally, object-oriented analysis and design is still young.
Standards are still not firm.

The object-oriented approach is not a panacea. It is not always
the best choice. And when it is selected, the transition maybe difficult

for many organizations. The object-oriented approach will require a

radically new way of thinking about software development. Analysts will

have to deal with a whole new language involving classes, inheritance,

encapsulation, polymorphism, virtual functions, overloading, and a whole

new model of programming.

Simplistically, in the object-oriented approach, the world is

modeled in terms of objects that pass messages back and forth. The user
does not need to know the details of how an object implements a

message(data abstraction), but only what goes in and what comes back. He

or she simply creates objects from a class and passes them messages.

The object-oriented anlysis and design approach presented here is

based on the Yourdon/Coad textbooks[l] and [2]. Their approach appears

to be the most widely accepted and is very clearly explained in these

texts. These texts are highly recommended to any developer who plans to

utilize OOA/OOD.

Terminology

attribute - a characteristic of an object, such as a name, size, part

number, etc.

class - An abstract description of the data and behavior of a collection

of similar objects.

data abstraction - defining high-level data types that provide a

complete description of the system without a great amount of detail.

XVII-I

encapsulation - the tying together of data and functions into a single
entity.

inheritance - the property of objects that gives them access to data and

functions contained in a previously defined class.

polymorphism - literally, "many shapes". The exact way of implementing a

service or function depends on the class that an object is in. You may
have the same function name implemented differently in different
classes.

service - a behavior that an object performs.

The Object-Oriented Approach

The object-oriented approach began with the programming language

$imula. It then spread with other languages such as SmallTalk, and C++.

The need for analysis and design approaches to support these languages

led to object-oriented analysis(OOA), object-oriented design(OOD), and

object-oriented programming(OOP). A language that supports object-

oriented programming is known as an OOL. OOD is very closely related to

OOA. OOD basicall_ refines the model that was built in the OOA analysis.

Both can be done without necessarily building the system with a language

that supports object-oriented programming(OOP). There are still benefits

to be gained from such an approach.

Object-Oriented

, I
Analysis<-->Des ign

I
Imp lement at i on

OOL(SmallTalk, C++)

OBL (Ada)

Non OOL (FORTRAN)

Figure 1 The Object-Oriented Approach

Object Diagrams

The heart of OOA/OOD is the object diagram. It consists of
objects(rectangles with the object/class name, attributes, and services

it provides listed inside. These objects have inheritance relations with

classes, component relations when they are part of a larger system, and

instance relationship when a certain number of the these objects are
required for a system to perform. An object can pass message to other

objects. These are the arrows. Objects can be grouped into subject areas

to make the system easier to understand. Below is an object diagram
that illustrates all of the symbols used.

XVII-2

Person
Man

J

I

_IIDO2 Event 2

Launc-_-h]1

rbiter

ate

_2 _L-A'ttr_i'b'ute "" 2

F3..

Machine ,

Booster

L

,ull. iii1.11

Propulsion

Shuttle

1

I Main Engine %

im

3

Figure 2 Object Diagram

The subject areas are Man, Machine, and Event. Inside Man is the class

Person. A specialization of Person is Astronaut. The Astronaut class

inherits information from person. Only the unique aspects of Astronaut
need to be described, due to inheritance. There are 7 Astronauts"

required for a Shuttle mission. This is shown by an instance line. An

event consists of a Shuttle Launch. A launch has an orbiter, a launch

date, an STS number, etc. associated with it. The propulsion system
consists of 3 main engines, 2 boosters, and a refueling tank. This is

the component relationship.

Guidance for MFSC Software does not specify any particular

development methodology. This report shows how charts such as the

object diagram can be used in the development process.

Conclusions

Object-oriented analysis and design enable the developer to model

the problem using objects, classes, attributes, and functions as the

components. The combining of data and processing into a single

entity(data encapsulation) protects the data and aids in making the
software more reusable.

This approach is based on a model that is closer to reality. This

facilitates communications with the user.

Although the approach is different from the classical waterfall

approach used with structured techniques, the process can be adapted to

fAt within the guidelines of the EDP.

References

XVlI-3

I. Peter Coad and Edward Yourdon, Object-Oriented Analysis,
Yourdon Press, 1991.

2. Peter Coad and Edward Yourdon, Object-Oriented Design,
Yourdon Press, 1991.

XVlI-4

